
Unknown Malware Detection Using Network Traffic

Classification

Dmitri Bekerman, Bracha Shapira, Lior Rokach, Ariel Bar

Department of Information Systems Engineering

Ben-Gurion University of the Negev

Beer Sheva, Israel

Email: {bekerdmi@post.bgu.ac.il, bshapira@bgu.ac.il, liorrk@post.bgu.ac.il, arielba@bgu.ac.il}

Abstract— We present an end-to-end supervised based system

for detecting malware by analyzing network traffic. The

proposed method extracts 972 behavioral features across

different protocols and network layers, and refers to different

observation resolutions (transaction, session, flow and

conversation windows). A feature selection method is then used

to identify the most meaningful features and to reduce the data

dimensionality to a tractable size. Finally, various supervised

methods are evaluated to indicate whether traffic in the network

is malicious, to attribute it to known malware “families” and to

discover new threats. A comparative experimental study using

real network traffic from various environments indicates that the

proposed system outperforms existing state-of-the-art rule-based

systems, such as Snort and Suricata. In particular, our

chronological evaluation shows that many unknown malware

incidents could have been detected at least a month before their

static rules were introduced to either the Snort or Suricata

systems.

Index Terms— Network security, Network intrusion detection

systems, Malware detection, Machine learning.

I. INTRODUCTION

Modern malware software utilizes sophisticated ways to

hide itself, not only from the most modern anti-malware

software, but also from the most experienced IT engineers.

Some malware [1] has remained under the radar for years,

stealing confidential data, disrupting enterprise systems, and

damaging dedicated equipment.

Many malware programs use the Internet in order to

communicate with the initiator of the attack in order to receive

new tasks, software updates, or to leak collected data. Yet,

when such malware tries to communicate with its Command

and Control (C&C) center, it most likely uses common and

known network protocol to pass through firewalls. In some

cases, popular web resources might be involved in malicious

activities as a proxy or as part of the communication algorithm

with the C&C center [2].

Malware programs are capable of hiding themselves in

systems or disabling their activity when they discover attempts

to detect them. Therefore, it is required to use passive systems

(i.e., trusted monitoring) that can detect malicious activities on

targeted machines without accessing them.

Some previous studies focused on analyzing network traffic

usually by either focusing on a specific network layer or

protocol [3-5], or on certain malware or malware families [6].

The behavior of various malware might be reflected in

different layers or protocols, rendering these “partial”

perspectives inadequate. The leading existing solutions solve

tasks assigned to them with high accuracy, but find it difficult

to adapt to the constant evolution of existing malware types, as

well as new types of malware. Moreover—as often occurs in

reality—when attackers understand that their camouflage

technique is discovered, they develop a new technique that can

bypass existing anti-malware mechanisms. Hereby, techniques

that handle specific or known malware become irrelevant

shortly after their publication.

In this study we detect malicious communication such as

interaction with C&C servers in order to enable alerts about the

intrusion. Our solution is based on cross-layers and cross-

protocols traffic classification, using supervised learning

methods. We offer a solution that can detect previously

unknown malware, based on previously learned ones. Our

solution is dynamically adaptive, always remaining one step

ahead of attackers. These traits enable us to discover malicious

activities earlier than other platforms, sometimes doing so at

least one month prior to state of the art rule-based systems.

To achieve this goal, we adapted methods and techniques

used for network classification. These methods are used to

classify network protocols or applications running behind these

protocols that are related to one or more network layers.

Motivated by these techniques, we developed an approach that

crosses all network layers (except the physical layer). The

proposed method analyzes DNS, HTTP, and SSL protocols,

and combines different network classification methods in

different resolutions of network activities in order to better

differentiate malicious activities against benign network traffic.

An additional strength of our approach is its ability to take

into account the fact that targeted machines can be behind

NAT (Network Address Translation). This setting makes it

impossible to determine the ID of the targeted machine but

only its sub-network. In addition, we analyzed traffic

behavioral patterns rather than their payload to support

handling of encrypted malicious communication with C&C.

In the empirical study conducted to evaluate our approach,

we used traffic that included malware generated in different

sandboxes, as well as traffic from two real enterprise networks.

We trained our model on data from several network

2015 IEEE Conference on Communications and Network Security (CNS)

978-1-4673-7876-5/15/$31.00 ©2015 IEEE 134

environments and applied it on previously unseen network

traffic to evaluate our model’s domain-independence. In

addition, our test data contained multiple types of malware that

were not included in the data used in the training of the model.

The extremely high accuracy obtained by our model attests to

its robustness.

We compare the results of our model to some of today’s

most popular rule-based Network Intrusion Detection Systems

(NIDS): Snort [7] and Suricata [8]. These systems utilize a

comprehensive set of rules provided by leading companies in

the field such as VRT [9] and ETPro [10]. Using our new

method, we were able to detect malicious activities at least one

month before a deterministic detection rule was deployed in

these systems. Our method can thereby be used to strengthen

the detection rate of existing rule-based systems, especially by

reducing the time between the first day of attack and the day of

detection rule deployment.

II. RELATED WORK

Network behavioral modeling is a popular approach for

malware detection and malware family classification [12].

However, most of the existing studies (e.g., [6], [13]) focus on

specific types of malware, such as Bots, or on a specific type of

attack such as DoS or anomalies detection in specific protocols

or network layers. Our work combines features from different

layers and protocols, extracted in various resolutions, and are

able to detect a variety of known and new malware.

Many studies have focused solely on abusing the DNS

protocol, such as Domain Generation Algorithms [6] [14], and

Fast-Flux DNS [15]. Unfortunately, malware has become

sophisticated and uses legitimate sites for its malicious

purposes [2], including cloud storage and web applications that

may take the role of a proxy between malware and attacker.

For such scenarios, solutions that are based solely on data

obtained from DNS may fail to detect malicious activities.

Other approaches for network behavioral modeling of

malware detection summarized network activity information

from the application layer [3], [4] or analyzed structural

similarities among malicious HTTP traffic traces [5].

Alternatively, real-time solutions were designed to detect

known and new attacks in network traffic using attributes from

IP, TCP, UDP and ICMP headers [16], [13]. They focused

solely on packets rather than on including the network flow as

well. Thus, they cannot handle cases where legitimate network

resources are involved in a malicious communication path.

Saeed and Ali [12] examined network flows. They classified

known malicious families. However, they did not attempt to

distinguish between malicious and benign traffic as we are in

the current research.

One major shortcoming of the approaches that aimed at

specific use cases was that they could not detect previously

unseen malware. Our solution combines several network

protocols at different network layers and different resolution of

network activities, and involves machine learning methods. A

major advantage of our approach is the ability to detect

unknown new malware or malware families that were not

previously investigated.

We present a new set of engineered network features that

represent various aspects, layers and resolutions of the network

traffic. Our approach is strengthened by Beigi et al. [17], who

focused their study on the analysis of the relative importance of

network traffic-based features generated by bots, and chose the

most useful subset of features that would produce the best

classification accuracy. They concluded that a

"multidimensional" set of features combined from different

network flow layers improves classification accuracy.

For the task of malicious network behavioral modeling, we

adapted network traffic classification techniques [18], [19].

These techniques are usually applied in classifying network

protocols or applications running behind the protocols that are

dedicated to one or a couple of network layers. These

techniques have the potential to solve difficult network

management problems without involving users or hosts

(passive way) on the corporate sub-network or ISP level.

Today, known approaches [18], [19] classify traffic by

recognizing statistical patterns in externally observed attributes

about the traffic without deep inspection of the packet payload

that can be encrypted or obfuscated.

Network traffic classification can be performed in two

different ways:

 Packet level methods examine each packet's

characteristics and application signatures.

 Flow level methods are based on the aggregation of

packets to flows and extraction of characteristics and

statistical analysis from the flow.

Network traffic classification can be based on different

major attributes:

 Port based attributes are based on the target TCP or UDP

port numbers that are assigned by the Internet Assigned

Numbers Authority (IANA).

 Payload based attributes are based on signatures of the

traffic at the application layer level.

 Statistical based attributes relate to traffic statistical

characteristics (e.g. flow duration, idle time, packets'

inter-arrival time and length). These attributes are unique

for certain classes of applications and enable

distinguishing different source applications from one

another.

We adapt network classification techniques in the above

proposed solutions to classify between malicious and benign

network traffic, instead of classifying the application behind it.

Our solution combines several network protocols at different

network layers and different resolution of network activities,

and involves machine learning methods to detect unknown

new attacks. Specifically, we present a new set of engineered

network features that represent various new aspects of the

network traffic.

III. SYSTEM OVERVIEW

In the interest of achieving our goals, we developed an

intrusion detection prototype system. While we were designing

our system, we were faced with a major challenge: the source

network could be NATed (Network Address Translation),

which implies the need to analyze such a sub-network as one

2015 IEEE Conference on Communications and Network Security (CNS)

135

resource with many activities. For example: when a few

resources of a sub-network simultaneously open connections to

the same remote server, it is erroneously reflected as many

open connections to the server from one source. This

complicates the analysis when the collected data is from a sub-

network behind the NAT, due to the fact that the system would

alert the whole subnetwork rather than a specific machine.

The main assumption at the base of our model is that sub-

networks use well configured firewalls that block connection

to/from unknown protocols, as well as ports and application

layer protocols that are not in the scope of the organizational

policy. Therefore, we focus our work on the most commonly

used application layer protocols (DNS, HHTP and SSL).

 The data that can pass through firewalls is recorded and

relayed further to the global network. Our system analyzes the

collected data in order to detect malicious activities and issue

alerts when such activities are detected.

A. Network features

The uniqueness of our solution lies in the fact that we

observe data stream analysis in four resolutions, based on

Internet and Transport and Application layers, with features

generated accordingly (as presented in Figure 2). Specifically,

we model the following levels of traffic observations as

follows:

Fig. 1. Data stream observation resolutions.

 Transaction – Representative of an interaction between a

client and a server. It is a two-way communication: the

client sends a request to the server, and the server

processes the request and sends a response back to the

client. We handle the following types of transactions:

 An HTTP transaction consists of sending one request

and response message between a client and a server.

 A DNS transaction is equivalent to one session with

two packets, one for the request and another for the

response with the same transaction ID.

 An SSL transaction is the aggregation of all App-data

packets sent from a client to a server and vice versa

after a successful handshake step and until the session

ends.

 Session – A unique 4-tuple consisting of source and

destination IP addresses and port numbers.

 A TCP session begins with a successful handshake,

and ends with either a timeout, or a packet with the

RST or FIN flag from any of the devices.

 A UDP session consists of all packets sent from a

client to a server and from a server to a client until a

defined communication idle time is reached.

 Flow – A group of sessions between two network

addresses (IP pair) during the aggregation period. The

aggregation period can be specified by an algorithm as

the accurate period of time from the start of the first

session in the flow, until the maximum idle time between

two sessions. A new flow starts if the time between the

end of a session (the last packet) and the start of a new

session (first packet) is more than the defined idle time.

The new session is then part of the new flow.

 Conversation Windows – A group of flows between a

client and a server over an observation period. A

conversation can be defined between two network

addresses (IP pair) or a group of network resources (e.g.,

between two autonomous systems).

Each of the above mentioned observation levels have a

number of unique properties defining its behavior in both

directions of the two-way traffic. We have extracted 927

features that may model their behavior, the full list of which

can be found in [20].

Table I presents a few examples of features drawn from

different protocols and layers of the network traffic, while the

full list is given in [20]. For each of the cumulative features we

calculate the following statistics as additional features:

minimum, first quartile, median, third quartile, maximum,

average, standard deviation, variance and entropy.

TABLE I. EXAMPLE OF FEATURES

Level Protocol Feature

Transaction

HTTP

Hostname

Referrer

Cookie
User Agent

Content type

SSL
Server name
SSL version

Certificate date expired

DNS

Query name Alexa 1M rank

Number of canonical names
Response flags

Time-to-live

Session TCP

Destination port
Packet size

Number of packets with the PUSH bit set

Number of out-of-order packets

Flow

TCP

Quantity of keep-alive packets in flow

Packet inter-arrival time

Number of port reusing packets

IP
Destination IP
IP Geo-location

IP Autonomous System number

Conv. Win.

UDP Ratio between sent and received packets

DNS Number of non-existent domain responses

Number of sessions in flow

Total amount of data transmitted

B. Features extraction

To enable the extraction of the above described features we

have developed a dedicated feature component that processes

the raw network traffic, extracts the features and provides the

features as an input to the Machine Learning analyzer. Figure 3

presents a data flow diagram of the feature extractor

implementation. It was implemented on top of Wireshark [21]

2015 IEEE Conference on Communications and Network Security (CNS)

136

library to extract data from the captured network traffic in

tcpdump format [22]. The output of the system is feature

vectors in the format of CSV files (Comma-Separated Values)

that are then sent to the classification algorithms.

Fig. 2. Feature extraction data flow.

The input file of a feature extractor is *.pcap files and

publicly available external databases such as Alexa Rank [23]

and GeoIP. All data is passed to the Input Processor that

serializes input files to corresponding objects. Thereafter,

objects are passed to the Parallel Executor computation engine

which extracts features from each of the four hierarchical

network levels by reconstructing a TCP stack on top of

Wireshark libraries. The features are then submitted to the

output processor. Upon completion of processing an entire

pcap file, the Output Processor generates a feature vector for

each observation level and for their join. Finally, a CSV file

containing feature vectors is passed to the classification

algorithms.

C. Machine learning

Based on results from previous studies [3-6], [12-16]

related to malware detection and network classification, we

decided to choose and test three different classification

algorithms including Naïve Bayes, a basic and simple model,

as well as decision tree (J48) and Random Forest [24]. For

feature selection we use the CFS (Correlation Feature

Selection) algorithm [25]. All machine learning algorithms that

we used were implemented using the Weka library [26].

Since the data is imbalanced, we had to use the True

Positive Rate (TPR) and False Positive Rate (FPR) and the

Area under the Curve (AUC) metrics to evaluate the

performance of our detection results. Due to space limitations

we mostly present results in terms of the AUC which is known

to be a reliable measure for imbalanced tasks [27].

 TPR – Measurement of the proportion of actual positives

(i.e., malicious network activities), which are correctly

identified as such.

 FPR – Measurement of the proportion of actual negatives

which are incorrectly identified as positives, i.e., the

percentage of benign network activities incorrectly

identified as malicious.

 AUC – The receiver operating characteristic (ROC) curve

is a standard technique for summarizing classifier

performance over a range of trade-offs between the TPR

and FPR. Each point in the curve corresponds to a

particular cut-off, having as an x-value the false positive

value (specificity) and as a y-value the true positive value

(sensitivity). In terms of classifier comparison, the best

curve is the leftmost one, the ideal one coinciding with

the y-axis. Thus, the area under the curve (AUC) can be

used as a performance metric for comparing ROC curves.

The AUC range is 0–1. The area under the diagonal 0.5

represents a random classifier. On the other hand, a value

of 1 represents an optimal classifier.

IV. DATASET

A. Dataset sources

In order to evaluate the performance and the robustness of

the proposed detection method, we used network traffic

captures that included malware as well as normal (benign)

network traffic that was collected by the Verint [28] and

Emerging Threats [29] security companies and by us at our lab.

Some of the captures were recorded in sandbox environments,

others in real networks.

The following is information about our dataset that

consisted of network captured tcpdump *.pcap files from

different sources:

1) The Sandbox malicious captures included:

a) 2,585 records obtained from the Verint [28] sandbox.

b) 7,991 records obtained from an academic sandbox.

c) 4,167 records obtained from the Virus Total [30].

d) 23,600 records obtained from the Emerging Threats [29].

e) 12,377 malicious records collected from the web and

open source community1.

2) Benign corporate traffic was captured for 10 days in a

students' lab at Ben-Gurion University.

3) Corporate traffic gathered by Verint [28] from a real

network including malicious and benign traffic.

B. Labeling methods

The labeling of the data was carried out using two labeling

methods (for the many experiments that we conducted): the

first utilized well known NIDSs in order to enable comparison

of our solution to open source systems that are available to

everyone. The second was Verint’s blacklist labeling.

All network traffic that was not marked as malicious was

considered benign. All data except the proprietary real network

traffic was labeled using both labeling methods due to the fact

that data provided from the real network was sanitized and

could not be labeled by commercial NDISs.

Following are details about each of the labeling methods:

1) For the labeling of the NIDSs we used Snort and Suricata

SIDs, which uniquely identify the rules based on deep-packet

inspection rules. We used only SIDs related to the "A Network

Trojan was Detected" category:

a) Snort uses the VRT [9] rules set

1 www.contagiodump.blogspot.com www.mlwr.com

www.malware-traffic-analysis.net www.virusshare.com

2015 IEEE Conference on Communications and Network Security (CNS)

137

b) Suricata uses the ETPro [10] rules set

2) The proprietary labels provided by Verint unite all

malicious activities to 52 unique families. Those labels were

based on the domains, URLs and destination IP blacklist.

Table II presents a brief comparison between the two types

of labeling we used. While the corporate traffic gathered by

Verint was labeled only with their labels, all other datasets

were labeled with both types of labels.

We undersampled the majority class in the training data.

This is known as a simple yet efficient method for mitigating

the imbalance challenge [31]. Specifically, we randomly chose

150k unlabeled instances from over 50M instances and used

them as benign.

TABLE II. COMPARISON OF THE TWO LABELING METHODS

 Verint labels Snort and Suricata labels

Created by cyber

security experts
VRT & ETPro SIDs

Based on
Domain names and

IP addresses
Deep packet inspection static rules

Existing

labels
52 ≈ 6500 + 9500

Seen labels 19 325 + 1180

Multi-

labeling

Non generic family

selected
The oldest rule selected

Example
Name: Virut

Value: *.2traff.cn

SID: 2803111
Severity: ETPRO TROJAN

Descr: Win32.KSpyPro.A.Checkin

C. Dataset analysis

The 18,000 malicious instances labeled with Verint labels

that relate to 19 malware families are summarized in Table III.

TABLE III. MALWARE FAMILIES INSTANCES DISTRIBUTION

Name Count of instances Percentage

General Malware 5287 29.42%

Virut 39 0.22%

Sality 1005 5.60%

Zeroaccess 47 0.26%

Nuqel 25 0.14%

Conficker 486 2.71%

Backdoor.Paproxy 2 0.01%

APT1 337 1.88%

Shiz 377 2.10%

Mebroot 23 0.13%

Xpaj 223 1.24%

Weelsof 1145 6.38%

PowerLoader 6 0.03%

Pony Loader 5 0.03%

Pincav 125 0.70%

Oficla 165 0.92%

Matsnu 96 0.54%

Krbanker 18 0.10%

Gypthoy 2 0.01%

Darkcomet 3 0.02%

CryptoLocker 14 0.08%

Carberp 1729 9.64%

Expiro 5 0.03%

Gamarue 1 0.01%

Scar 14 0.08%

Emerging threats 6772 37.74%

For VRT [9] and ETPro [10], labeling only SIDs related to

the "A Network Trojan was detected" category was used. All

SIDs were associated with their creation date using the public

changelog.2 This date is a de-facto day of malware discovery.

If some session contains packets marked with two or more

SIDs, the oldest one is selected as the representative SID. In

this way, all malicious sessions were marked not only with

their rule, but also with their discovery date. To reduce

resolution granularity from the day of the rule creation, we

aggregated it into weeks.

To reduce the data volume to a tractable size, the number

of samples was reduced using stratified sampling by malware

family. Thus, the proportion between SIDs was preserved and

the total number of malicious sessions was reduced from 328k

to 50k. Table IV provides information about the labeled data

while Figure 3 presents the count of new SIDs introduced each

week and its aggregation. As can be observed, the volume and

variety of new SIDs is intensified more than linear over time.

Fig. 3. VRT and ETPro sum of SIDs related to weeks during the period of

15.12.2006 – 10.12.2014.

TABLE IV. VRT AND ETPRO LABELED INSTANCES INFORMATION

VRT

(Snort)

ETPro

(Suricata)

Combined

VRT & ETPro

Unique rules 325 1180 1300

Existing Malicious

instances
95274 281578 328749

Used Malicious
Instances

12524 46046 50000

Period 15.12.2006 – 10.12.2014

Number of weeks 110 256 260

V. EVALUATION

To evaluate our system and the effectiveness of the

extracted features, we conducted experiments to test several

aspects. Specifically, we first evaluated the system's abilities

related to the malware families: we attributed malicious traffic

to known families and detected new families. Then, we

evaluated the effect of the environment on the performance;

specifically, we tested several sandbox environments as well as

real traffic data. In addition, we also conducted chronological

experiments in which we demonstrated our system’s ability to

detect new malware. Specifically, in many cases our system

was able to identify novel threats approximately a month prior

to the appearance of the corresponding detection rules in state

2 https://rules.emergingthreats.net/changelogs

https://support.sourcefire.com/notices/seus

2015 IEEE Conference on Communications and Network Security (CNS)

138

of the art NIDSs. Finally, we evaluated the robustness of

features across environments.

A. Malware families

1) Family classification

The goal of this experiment was twofold. Our primary goal

was to evaluate the capabilities of our method by

differentiating benign traffic from malicious traffic. Secondly,

we wanted to evaluate the method’s ability to further classify

the malicious traffic to known labeled families.

Although this task has already been addressed by previous

studies [12], our experiments demonstrate that our approach

can achieve comparable results. We used Verint labeling

families as our training data and added benign network traffic

to be classified as an additional family class. We evaluated our

solution only for families that had at least 10 instances to

enable training. We applied the CFS algorithm for feature

selection that identified the 12 network features (out of 927)

presented in Table V as most effective for this task. It is

apparent that even this small set of features spans across layers,

protocols and observation resolution.

TABLE V. 12 NETWORK FEATURES USED FOR FAMILY CLASSIFICATION

Level Protocol Feature

Session TCP Number of packets with RST flag

Flow

TCP
Number of packets sent by client with ACK flag
Number of destination ports and sessions ratio

HTTP Median of inter-arrival time

DNS

Query name Alexa 1M Rank

Count of DNS response addresses records
Count of DNS response answer records

Count of DNS response authoritative records

Conv.

Win.

TCP
Number of duplicate ACKs

Number of Keep-alive packets

DNS
Number of sessions and good DNS responses

ratio

 Number of flows

We used 10-fold cross validation to split the data for train

and test sets and applied the Random Forest, Naïve Bayes and

J48 learning algorithms. As seen in Figure 4 we were able to

distinguish between benign and malicious traffic with near-

perfect accuracy, as well as to classify malware to their

families with very high accuracy.

Fig. 4. Cross family classification accuracy.

2) Detection of unknown malicious families

The goal of this experiment was to show that our method

can identify previously unknown malware families. We trained

our model on certain families and tested the accuracy of

classification between benign and malicious traffic on other

families. For this task, the general malware families, General

Malware and Emerging Threats are excluded from the dataset,

as they do not represent any specific behavior. Rather, as

observed from the family classification experiment, their

behavior distributes among all families. We trained the model

in a leave-one out manner, each time leaving one malicious

family out, and tested on the one left out family. The suggested

method was able to detect all new malware families with high

accuracy. As observed in Figure 5, the Random Forest

algorithm (which boosts the J48 algorithm) is able to detect all

new families with very high accuracy (most of the families

detected with an AUC of 0.98 except Conficker that detected

with an AUC of 0.77), while the Naïve Bayes—a very simple

algorithm—fails for some complex cases (e.g., APT1, Xpaj),

but is effective enough in most cases.

Fig. 5. Detecting unknown malicious family accuracy.

B. Effect of environments

1) Network environment robustness

The goal of this experiment was to show that our method is

robust to the differences in the network environments. All

together we obtained data from five very different

environments (i.e., network traffic obtained from a variety of

sources). It is important to notice that learning from one

environment and classifying another environment was not

addressed in any previous studies related to malware detection,

although it is a real and practical challenge. Again, we

implemented the leave one out splitting method. We trained

the model on all but one environment and tested it on the one

left-out environment. As seen in Figure 6, the results are very

accurate in classifying sandbox environments trained on other

sandbox environments. Results are lower (AUC of 0.7) for the

real network environment that was trained on sandbox

environments. Thus, we can conclude that the method is more

robust between similar environments.

Fig. 6. Network classification from unknown environment.

2015 IEEE Conference on Communications and Network Security (CNS)

139

We believe that in order to improve the robustness between

non-similar environments, it is possible to apply transfer

learning methods [32] that can also measure the similarity

between domains. It is also possible to train the system for

separately only for non-similar environments.

2) Real network traffic experiment

All previous experiments were applied to a dataset that

included both sandbox and real network data. However, the

results of the network environment robustness experiment

show that the real network environment behaves differently

(results were much lower); this phenomenon might stem from

the fact that the real environment may include more noise than

a synthetic sandbox environment. Therefore, the goal of this

experiment is to test the effectiveness of the method in

classifying benign and malicious network traffic in a real

environment. Since the real network traffic was recorded

continuously for several days, the system can use earlier data

to train for later in time events. Thus, in this experiment we

applied a time-split. The train and test sets were split by their

recording time as a percentage of all data records.

In the real network dataset, 2,693 malicious instances were

observed to be related to four different families as can be seen

in Table VI. To produce the classification model, and preserve

balance, only 10k benign instances were randomly chosen for

this experiment from the same real network.

TABLE VI. REAL NETWORK MALICIOUS FAMILY DISTRIBUTION

Name Count of instances Percentage

General Malware 1987 73.78%

Sality 234 8.69%

Conficker 421 15.63%

Emerging threats 51 1.89%

The results of this experiment are presented in Figure 7.

The results reveal that from the split point 60/40 (60% of data

in the train test and the remaining 40% in test set), the AUC

remains consistently above the level of 0.8. From the split

point 80/20, the stable level is raised to 0.9. This result

confirms that a moderate amount of data in the train set is

enough for high accuracy detection of malicious network flows

in a real network.

Fig. 7. Real network recording time split results.

C. Chronological experiments

Since our labeling includes, for each malicious network

instance, the relevant SID that relates to the Snort and Suricata

rules, as well as the rules' deployment date in these systems,

we were able to evaluate the extent to which our method can

handle malicious activities before they had been discovered.

This implies that this solution might handle future threats.

Here, we used the time split method, and split the data into

train and test sets based on the deployment dates of SIDs.

Thus, we train the system on traffic that includes malicious

activities that were handled before the split date, and test

detection accuracy on traffic from the "future" (i.e., traffic

instances for which SIDs are from later weeks). At each split

point, the CFS algorithm was used to select the best features

that divide benign and malicious traffic for the specific training

set. This simulates a regular scenario where the detection

model was developed and trained on the split date.

1) Four weeks foresight

In this section we would like to evaluate the ability of our

method to detect malware that has recently been introduced.

Specifically, in this section the test sets consist of sliding

windows of 4 weeks ahead of the latest training set point. For

example, for week 100, the training set consists of the data

labeled with SIDs deployed between weeks 1-100 and the test

set consists of data between the weeks 101-104.

The results of this experiment, presented in Figure 8, show

that the Random Forest classifier succeeds in detecting most of

the malware (except in 2 cases) 4 weeks before a relevant rule

was deployed. Naïve Bayes and the J48 fail (AUC<0.5) in

some cases, which can be explained by their overfitting

property.

The 2 cases with the sharp drop in the AUC between weeks

211 to 214 and between weeks 240 to 243 are the result of

malware that behaves very differently from previously trained

malware. When the malware's behavior is finally included in

the train set, the model stabilizes.

 The Random Forest was stable at all periods of time and

produced good AUC results. We received an average AUC

over all periods of 0.966. Such models can produce a high true

positive with a reasonable false positive and can be used in

production for different tasks.

Fig. 8. Chronological experiment by looking four weeks ahead, results.

2) Global foresight

Given the encouraging results for the 4 weeks foresight, we

wanted to evaluate how early in time our methods could detect

undiscovered malware activities. Similarly to the 4 weeks

foresight experiment, our train set included all data before the

weekly split points, but the train set in this experiment included

all future data (not only 4 weeks ahead).

2015 IEEE Conference on Communications and Network Security (CNS)

140

The results presented in Figure 9 show, for each week, the

detection performance of all malware that was discovered

afterward. We can see that the detection rate deteriorates as we

look further in time, because malware gradually evolves over

time.

Fig. 9. Chronological experiment by looking at all future datasets, results.

The interesting point is week 159, which is 3.5 years before

the newest malware in the dataset. The AUC at this point, and

in all the subsequent ones, is at least 0.9, which indicates

satisfactory model quality. This implies that our model is able

to handle future threats even 3.5 years before they occur. For

the week 309—which was 1 year before—and from then on,

the results are better, in that the AUC is higher than 0.95.

D. Robustness of features

Analysis of the previous experiments described in this

section has shown that only 204 features of the available 927

were ever selected by the CFS algorithm. On average, only 27

features were selected during each week for the respected

model as is presented in Figure 10. Furthermore, some of the

features were constantly selected for most of the models during

all periods (weeks). From Figure 11, it is clearly shown that the

significant part of these features were included in models for

more than a period of 100 weeks (2 years). This means that a

very small set of features can serve the model for a long period

of time.

Fig. 10. Number of features used in each week.

Fig. 11. Atrtributes usage histogram.

As an extension to this phenomena, in this experiment we

also examined whether there was a constant set of features that

were effective cross environments, and not only over time.

Thus, we extracted for each environment (Verint, Academic,

Virus Total and Emerging Threats sandboxes), a specific set of

features. In addition, as an alternative, for each environment

we prepared a model that was based on features selected from

all other environments. We refer to this set as the global set.

For each environment, the chronological experiment was

conducted twice; once with the specific features and once with

the global selected features. We compared the results of the

AUC measure between the two experiments.

Comparison results are presented in Figure 12. We measure

the robustness of our selected features as the difference

between the AUC of a model created with global selected

features and the AUC of models created with private selected

features. In most cases, as seen from Figure 12, (except for the

Naïve Bayes) the difference is equal or higher than 0, thus

global selected features are better than those obtained using the

specific ones, or the difference is not significant. The only

anomaly in these results is with the Naive Bayes model which

in general produced less accurate results compared to the

decision tree models, and thus is more resilient to the features'

changes. It therefore can be concluded that it is possible to

extract features globally and obtain comparable results.

Fig. 12. Difference in average AUC.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we presented a network classification method

that was used to classify malicious and benign traffic and

attribute malicious activity to a malware family both for known

and new malware. We show that different observation

resolution, cross layers and protocols features improve

classification performance. The accuracy of the proposed was

not affected by network environments, neither sandbox nor real

networks. The predictive performance results showed

significant improvement over modern rule based network

intrusion detection systems (e.g., Snort and Suricata); unknown

malware was detected at least a month before their static rule

was deployed. All this was possible with a small amount of

network behavior features, which are suitable over time and for

different network environments.

The practical significance of this research is the opportunity

to develop highly accurate and good performing NIDS which

apply machine learning algorithms, and can detect most

modern malicious software as well as new and unknown

malware. Since the proposed method analyzes only traffic

behavior and not its content, it is effective even for encrypted

traffic and for malware that uses legitimate network resources,

such as C&C or proxy toward C&C. Since no payload analysis

2015 IEEE Conference on Communications and Network Security (CNS)

141

is used for this approach, users' privacy is preserved, thus such

NIDS can be integrated in enterprise network systems.

For future work, we intend to extend the research toward

transfer learning techniques to improve detection from

untrained network environments, evaluate the proposed

methods and models on mobile network traffic, test the

proposed methods for malware family clustering, and finally

adjust the method for online detection for high bandwidth

networks.

ACKNOWLEDGMENT

We would like to thank Verint cyber research team for

sharing their knowledge, providing the malware labeling

database and capturing real network traffic for our

experiments. Also, thanks to Chris Montgomery from

Emerging Threats for providing the ETPro ruleset and sandbox

captures that allowed us to compare our model to the Snort and

Suricata systems. This research was sponsored by the Captain

Cyber consortium funded by the Chief Scientist of the Israeli

Ministry of Economy under the Magnet Program.

REFERENCES

[1] Matrosov, Aleksandr; Rodionov, Eugene; Harley, David;

Malcho, Juraj;, "Stuxnet Under the Microscope," ESET LLC,

September 2010.

[2] Symantec, "Malware Targeting Windows 8 Uses Google Docs":

http://www.symantec.com/connect/blogs/malware-targeting-

windows-8-uses-google-docs.

[3] C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro, M. Van Steen,

F. C. Freiling and N. Pohlmann, "Sandnet: Network Traffic

Analysis of Malicious Software," in Workshop on Building

Analysis Datasets and Gathering Experience Returns for

Security, Salzburg, Austria, 2011.

[4] N. Stakhanova, M. Couture and A. A. Ghorbani, "Exploring

network-based malware classification," in 6th International

Conference on Malicious and Unwanted Software

(MALWARE), Fajardo, Puerto Rico, 2011.

[5] R. Perdisci, W. Lee and N. Feamster, "Behavioral Clustering of

HTTP-Based Malware and Signature Generation Using

Malicious Network Traces," in 7th USENIX conference on

Networked systems design and implementation (NSDI), San

Jose, CA, USA, 2010.

[6] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M.

Szydlowski, R. Kemmerer, C. Kruegel and G. Vigna, "Your

Botnet is My Botnet: Analysis of a Botnet Takeover," in 16th

ACM Conference on Computer and Communications Security

(CCS), Chicago, Illinois, USA, 2009.

[7] "Snort": https://www.snort.org/.

[8] "Suricata": http://suricata-ids.org/.

[9] "VRT rulset": https://www.snort.org/downloads.

[10] "ETPro ruleset":

http://www.emergingthreats.net/products/etpro-ruleset.

[11] A. S. Raihana, A. F. Mohd, M. N. A. Zul, M. Z. Mohd, S. R.

Siti and Y. Robiah, "Revealing the Criterion on Botnet

Detection Technique," International Journal of Computer

Science (IJCSI), vol. 10, no. 2, pp. 208-215, March 2013.

[12] S. Nari and A. A. Ghorbani, "Automated Malware Classification

based on Network Behavior," in IEEE International Conference

on Computing, Networking and Communications (ICNC), San

Diego, CA, USA, 2013.

[13] P. Sangkatsanee, N. Wattanapongsakorn and C. Charnsripinyo,

"Practical real-time intrusion detection using machine learning

approaches," Computer Communications, vol. 34, no. 18, pp.

2227-2235, 1 December 2011.

[14] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-

Nimeh, W. Lee and D. Dagon, "From Throw-Away Traffic to

Bots Detecting the Rise of DGA-Based Malware," in 21st

USENIX Security Symposium, Bellevue, WA, USA, 2012.

[15] T. Holz, C. Gorecki, K. Rieck and F. C. Freiling, "Measuring

and Detecting Fast-Flux Service Networks," 15th Annual

Network and Distributed System Security Symposium (NDSS),

San Diego, CA, USA, 2008.

[16] M. Amini, R. Jalili and H. R. Shahriari, "RT-UNNID: A

practical solution to real-time network-based intrusion detection

using unsupervised neural networks," Computers & Security,

vol. 25, pp. 459 - 468, 2006.

[17] E. B. Beigi, H. Hadian, N. Stakhanova and A. A. Ghorbani,

"Towards effective feature selection in machine learning-based

botnet detection approaches," in IEEE Conference on

Communications and Network Security (CNS), San Francisco,

CA, USA, 2014.

[18] T. T. Nguyen and G. Armitage, "A survey of Techniques for

Internet Traffic Classification using Machine Learning," IEEE

Communication Syrveys & Tutorials, vol. 10, no. 4, pp. 56-76,

January 2008.

[19] A. Callado, C. Kamienski, G. Szabo, B. P. Gero, J. Kelner, F.

Stenio and D. Sadok, "A survey on Internet Traffic

Identification," IEEE Communication Survey & Tutorial, vol.

11, no. 3, pp. 37-52, August 2009.

[20] "Full set of features":

www.ise.bgu.ac.il/dima/Network_Traffic_Features_Set.pdf.

[21] "Wireshark": www.wireshark.org.

[22] "TCPdump & LibPcap": http://www.tcpdump.org/.

[23] "Alexa rank": http://www.alexa.com/topsites.

[24] L. Breiman, "Random Forests," Machine Learning, vol. 45, no.

1, pp. 5-32, 2001.

[25] M. A. Hall, "Correlation-based feature selection for machine

learning," The University of Waikato, Hamilton, NewZealand,

1999.

[26] "Weka: http://www.cs.waikato.ac.nz/ml/weka/index.html.

[27] C. X. Ling, J. Huang and H. Zhang, "AUC: A Better Measure

than Accuracy in Comparing Learning Algorithms," in 16th

Conference of the Canadian Society for Computational Studies

of Intelligence, Halifax, Canada, 2003.

[28] "Verint," [Online]. Available: http://www.verint.com.

[29] "Emerging Threats": http://www.emergingthreats.net.

[30] "VirusTotal": http://www.virustotal.com.

[31] L. Xu-Ying, W. Jianxin and Z. Zhi-Hua, "Exploratory

Undersampling for Class-Imbalance Learning," Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on,

vol. 39, no. 2, pp. 539-550, 2009.

[32] A. Argyriou, A. Maurer and M. Pontil, "An Algorithm for

Transfer Learning in a Heterogeneous Environment," in

European Conference, ECML PKDD, Antwerp, Belgium, 2008.

2015 IEEE Conference on Communications and Network Security (CNS)

142

