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Abstract— We present an end-to-end supervised based system 

for detecting malware by analyzing network traffic. The 

proposed method extracts 972 behavioral features across 

different protocols and network layers, and refers to different 

observation resolutions (transaction, session, flow and 

conversation windows). A feature selection method is then used 

to identify the most meaningful features and to reduce the data 

dimensionality to a tractable size. Finally, various supervised 

methods are evaluated to indicate whether traffic in the network 

is malicious, to attribute it to known malware “families” and to 

discover new threats. A comparative experimental study using 

real network traffic from various environments indicates that the 

proposed system outperforms existing state-of-the-art rule-based 

systems, such as Snort and Suricata. In particular, our 

chronological evaluation shows that many unknown malware 

incidents could have been detected at least a month before their 

static rules were introduced to either the Snort or Suricata 

systems. 

Index Terms— Network security, Network intrusion detection 

systems, Malware detection, Machine learning. 

I. INTRODUCTION 

Modern malware software utilizes sophisticated ways to 

hide itself, not only from the most modern anti-malware 

software, but also from the most experienced IT engineers. 

Some malware [1] has remained under the radar for years, 

stealing confidential data, disrupting enterprise systems, and 

damaging dedicated equipment. 

Many malware programs use the Internet in order to 

communicate with the initiator of the attack in order to receive 

new tasks, software updates, or to leak collected data. Yet, 

when such malware tries to communicate with its Command 

and Control (C&C) center, it most likely uses common and 

known network protocol to pass through firewalls. In some 

cases, popular web resources might be involved in malicious 

activities as a proxy or as part of the communication algorithm 

with the C&C center [2]. 

Malware programs are capable of hiding themselves in 

systems or disabling their activity when they discover attempts 

to detect them. Therefore, it is required to use passive systems 

(i.e., trusted monitoring) that can detect malicious activities on 

targeted machines without accessing them. 

Some previous studies focused on analyzing network traffic 

usually by either focusing on a specific network layer or 

protocol [3-5], or on certain malware or malware families [6]. 

The behavior of various malware might be reflected in 

different layers or protocols, rendering these “partial” 

perspectives inadequate. The leading existing solutions solve 

tasks assigned to them with high accuracy, but find it difficult 

to adapt to the constant evolution of existing malware types, as 

well as new types of malware. Moreover—as often occurs in 

reality—when attackers understand that their camouflage 

technique is discovered, they develop a new technique that can 

bypass existing anti-malware mechanisms. Hereby, techniques 

that handle specific or known malware become irrelevant 

shortly after their publication.  

In this study we detect malicious communication such as 

interaction with C&C servers in order to enable alerts about the 

intrusion. Our solution is based on cross-layers and cross-

protocols traffic classification, using supervised learning 

methods. We offer a solution that can detect previously 

unknown malware, based on previously learned ones. Our 

solution is dynamically adaptive, always remaining one step 

ahead of attackers. These traits enable us to discover malicious 

activities earlier than other platforms, sometimes doing so at 

least one month prior to state of the art rule-based systems. 

To achieve this goal, we adapted methods and techniques 

used for network classification. These methods are used to 

classify network protocols or applications running behind these 

protocols that are related to one or more network layers. 

Motivated by these techniques, we developed an approach that 

crosses all network layers (except the physical layer).  The 

proposed method analyzes DNS, HTTP, and SSL protocols, 

and combines different network classification methods in 

different resolutions of network activities in order to better 

differentiate malicious activities against benign network traffic. 

An additional strength of our approach is its ability to take 

into account the fact that targeted machines can be behind 

NAT (Network Address Translation). This setting makes it 

impossible to determine the ID of the targeted machine but 

only its sub-network. In addition, we analyzed traffic 

behavioral patterns rather than their payload to support 

handling of encrypted malicious communication with C&C.   

In the empirical study conducted to evaluate our approach, 

we used traffic that included malware generated in different 

sandboxes, as well as traffic from two real enterprise networks. 

We trained our model on data from several network 
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environments and applied it on previously unseen network 

traffic to evaluate our model’s domain-independence. In 

addition, our test data contained multiple types of malware that 

were not included in the data used in the training of the model. 

The extremely high accuracy obtained by our model attests to 

its robustness. 

We compare the results of our model to some of today’s 

most popular rule-based Network Intrusion Detection Systems 

(NIDS): Snort [7] and Suricata [8]. These systems utilize a 

comprehensive set of rules provided by leading companies in 

the field such as VRT [9] and ETPro [10]. Using our new 

method, we were able to detect malicious activities at least one 

month before a deterministic detection rule was deployed in 

these systems. Our method can thereby be used to strengthen 

the detection rate of existing rule-based systems, especially by 

reducing the time between the first day of attack and the day of 

detection rule deployment. 

II. RELATED WORK 

Network behavioral modeling is a popular approach for 

malware detection and malware family classification [12]. 

However, most of the existing studies (e.g., [6], [13]) focus on 

specific types of malware, such as Bots, or on a specific type of 

attack such as DoS or anomalies detection in specific protocols 

or network layers. Our work combines features from different 

layers and protocols, extracted in various resolutions, and are 

able to detect a variety of known and new malware. 

Many studies have focused solely on abusing the DNS 

protocol, such as Domain Generation Algorithms [6] [14], and 

Fast-Flux DNS [15]. Unfortunately, malware has become 

sophisticated and uses legitimate sites for its malicious 

purposes [2], including cloud storage and web applications that 

may take the role of a proxy between malware and attacker. 

For such scenarios, solutions that are based solely on data 

obtained from DNS may fail to detect malicious activities. 

Other approaches for network behavioral modeling of 

malware detection summarized network activity information 

from the application layer [3], [4] or analyzed structural 

similarities among malicious HTTP traffic traces [5]. 

Alternatively, real-time solutions were designed to detect 

known and new attacks in network traffic using attributes from 

IP, TCP, UDP and ICMP headers [16], [13]. They focused 

solely on packets rather than on including the network flow as 

well. Thus, they cannot handle cases where legitimate network 

resources are involved in a malicious communication path. 

Saeed and Ali [12] examined network flows. They classified 

known malicious families. However, they did not attempt to 

distinguish between malicious and benign traffic as we are in 

the current research. 

One major shortcoming of the approaches that aimed at 

specific use cases was that they could not detect previously 

unseen malware. Our solution combines several network 

protocols at different network layers and different resolution of 

network activities, and involves machine learning methods. A 

major advantage of our approach is the ability to detect 

unknown new malware or malware families that were not 

previously investigated. 

We present a new set of engineered network features that 

represent various aspects, layers and resolutions of the network 

traffic. Our approach is strengthened by Beigi et al. [17], who 

focused their study on the analysis of the relative importance of 

network traffic-based features generated by bots, and chose the 

most useful subset of features that would produce the best 

classification accuracy. They concluded that a 

"multidimensional" set of features combined from different 

network flow layers improves classification accuracy. 

For the task of malicious network behavioral modeling, we 

adapted network traffic classification techniques [18], [19]. 

These techniques are usually applied in classifying network 

protocols or applications running behind the protocols that are 

dedicated to one or a couple of network layers. These 

techniques have the potential to solve difficult network 

management problems without involving users or hosts 

(passive way) on the corporate sub-network or ISP level. 

Today, known approaches [18], [19] classify traffic by 

recognizing statistical patterns in externally observed attributes 

about the traffic without deep inspection of the packet payload 

that can be encrypted or obfuscated. 

Network traffic classification can be performed in two 

different ways: 

 Packet level methods examine each packet's 

characteristics and application signatures. 

 Flow level methods are based on the aggregation of 

packets to flows and extraction of characteristics and 

statistical analysis from the flow. 

Network traffic classification can be based on different 

major attributes: 

 Port based attributes are based on the target TCP or UDP 

port numbers that are assigned by the Internet Assigned 

Numbers Authority (IANA).  

 Payload based attributes are based on signatures of the 

traffic at the application layer level. 

 Statistical based attributes relate to traffic statistical 

characteristics (e.g. flow duration, idle time, packets' 

inter-arrival time and length). These attributes are unique 

for certain classes of applications and enable 

distinguishing different source applications from one 

another. 

We adapt network classification techniques in the above 

proposed solutions to classify between malicious and benign 

network traffic, instead of classifying the application behind it. 

Our solution combines several network protocols at different 

network layers and different resolution of network activities, 

and involves machine learning methods to detect unknown 

new attacks. Specifically, we present a new set of engineered 

network features that represent various new aspects of the 

network traffic. 

III. SYSTEM OVERVIEW 

In the interest of achieving our goals, we developed an 

intrusion detection prototype system. While we were designing 

our system, we were faced with a major challenge: the source 

network could be NATed (Network Address Translation), 

which implies the need to analyze such a sub-network as one 
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resource with many activities. For example: when a few 

resources of a sub-network simultaneously open connections to 

the same remote server, it is erroneously reflected as many 

open connections to the server from one source. This 

complicates the analysis when the collected data is from a sub-

network behind the NAT, due to the fact that the system would 

alert the whole subnetwork rather than a specific machine. 

The main assumption at the base of our model is that sub-

networks use well configured firewalls that block connection 

to/from unknown protocols, as well as ports and application 

layer protocols that are not in the scope of the organizational 

policy. Therefore, we focus our work on the most commonly 

used application layer protocols (DNS, HHTP and SSL). 

 The data that can pass through firewalls is recorded and 

relayed further to the global network. Our system analyzes the 

collected data in order to detect malicious activities and issue 

alerts when such activities are detected. 

A. Network features 

The uniqueness of our solution lies in the fact that we 

observe data stream analysis in four resolutions, based on 

Internet and Transport and Application layers, with features 

generated accordingly (as presented in Figure 2). Specifically, 

we model the following levels of traffic observations as 

follows: 

 

Fig. 1.  Data stream observation resolutions. 

 Transaction – Representative of an interaction between a 

client and a server. It is a two-way communication: the 

client sends a request to the server, and the server 

processes the request and sends a response back to the 

client. We handle the following types of transactions: 

 An HTTP transaction consists of sending one request 

and response message between a client and a server. 

 A DNS transaction is equivalent to one session with 

two packets, one for the request and another for the 

response with the same transaction ID. 

 An SSL transaction is the aggregation of all App-data 

packets sent from a client to a server and vice versa 

after a successful handshake step and until the session 

ends. 

 Session – A unique 4-tuple consisting of source and 

destination IP addresses and port numbers. 

 A TCP session begins with a successful handshake, 

and ends with either a timeout, or a packet with the 

RST or FIN flag from any of the devices. 

 A UDP session consists of all packets sent from a 

client to a server and from a server to a client until a 

defined communication idle time is reached. 

 Flow – A group of sessions between two network 

addresses (IP pair) during the aggregation period. The 

aggregation period can be specified by an algorithm as 

the accurate period of time from the start of the first 

session in the flow, until the maximum idle time between 

two sessions. A new flow starts if the time between the 

end of a session (the last packet) and the start of a new 

session (first packet) is more than the defined idle time. 

The new session is then part of the new flow. 

 Conversation Windows – A group of flows between a 

client and a server over an observation period. A 

conversation can be defined between two network 

addresses (IP pair) or a group of network resources (e.g., 

between two autonomous systems). 

Each of the above mentioned observation levels have a 

number of unique properties defining its behavior in both 

directions of the two-way traffic.  We have extracted 927 

features that may model their behavior, the full list of which 

can be found in [20]. 

Table I presents a few examples of features drawn from 

different protocols and layers of the network traffic, while the 

full list is given in [20]. For each of the cumulative features we 

calculate the following statistics as additional features: 

minimum, first quartile, median, third quartile, maximum, 

average, standard deviation, variance and entropy. 

TABLE I.  EXAMPLE OF FEATURES 

Level Protocol Feature 

Transaction 

HTTP 

Hostname 

Referrer 

Cookie 
User Agent 

Content type 

SSL 
Server name 
SSL version 

Certificate date expired 

DNS 

Query name Alexa 1M rank 

Number of canonical names 
Response flags 

Time-to-live 

Session TCP 

Destination port 
Packet size 

Number of packets with the PUSH bit set 

Number of out-of-order packets 

Flow 

TCP 

Quantity of keep-alive packets in flow 

Packet inter-arrival time 

Number of port reusing packets 

IP 
Destination IP 
IP Geo-location 

IP Autonomous System number 

Conv. Win. 

UDP Ratio between sent and received packets 

DNS Number of non-existent domain responses 

 
Number of sessions in flow 

Total amount of data transmitted 

B. Features extraction 

To enable the extraction of the above described features we 

have developed a dedicated feature component that processes 

the raw network traffic, extracts the features and provides the 

features as an input to the Machine Learning analyzer. Figure 3 

presents a data flow diagram of the feature extractor 

implementation. It was implemented on top of Wireshark [21] 
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library to extract data from the captured network traffic in 

tcpdump format [22]. The output of the system is feature 

vectors in the format of CSV files (Comma-Separated Values) 

that are then sent to the classification algorithms. 

 

Fig. 2.  Feature extraction data flow. 

The input file of a feature extractor is *.pcap files and 

publicly available external databases such as Alexa Rank [23] 

and GeoIP. All data is passed to the Input Processor that 

serializes input files to corresponding objects. Thereafter, 

objects are passed to the Parallel Executor computation engine 

which extracts features from each of the four hierarchical 

network levels by reconstructing a TCP stack on top of 

Wireshark libraries. The features are then submitted to the 

output processor. Upon completion of processing an entire 

pcap file, the Output Processor generates a feature vector for 

each observation level and for their join. Finally, a CSV file 

containing feature vectors is passed to the classification 

algorithms. 

C. Machine learning 

Based on results from previous studies [3-6], [12-16] 

related to malware detection and network classification, we 

decided to choose and test three different classification 

algorithms including Naïve Bayes, a basic and simple model, 

as well as decision tree (J48) and Random Forest [24]. For 

feature selection we use the CFS (Correlation Feature 

Selection) algorithm [25]. All machine learning algorithms that 

we used were implemented using the Weka library [26]. 

Since the data is imbalanced, we had to use the True 

Positive Rate (TPR) and False Positive Rate (FPR) and the 

Area under the Curve (AUC) metrics to evaluate the 

performance of our detection results. Due to space limitations 

we mostly present results in terms of the AUC which is known 

to be a reliable measure for imbalanced tasks [27]. 

 TPR – Measurement of the proportion of actual positives 

(i.e., malicious network activities), which are correctly 

identified as such. 

 FPR – Measurement of the proportion of actual negatives 

which are incorrectly identified as positives, i.e., the 

percentage of benign network activities incorrectly 

identified as malicious. 

 AUC – The receiver operating characteristic (ROC) curve 

is a standard technique for summarizing classifier 

performance over a range of trade-offs between the TPR 

and FPR. Each point in the curve corresponds to a 

particular cut-off, having as an x-value the false positive 

value (specificity) and as a y-value the true positive value 

(sensitivity). In terms of classifier comparison, the best 

curve is the leftmost one, the ideal one coinciding with 

the y-axis. Thus, the area under the curve (AUC) can be 

used as a performance metric for comparing ROC curves. 

The AUC range is 0–1. The area under the diagonal 0.5 

represents a random classifier. On the other hand, a value 

of 1 represents an optimal classifier. 

IV. DATASET 

A. Dataset sources 

In order to evaluate the performance and the robustness of 

the proposed detection method, we used network traffic 

captures that included malware as well as normal (benign) 

network traffic that was collected by the Verint [28] and 

Emerging Threats [29] security companies and by us at our lab. 

Some of the captures were recorded in sandbox environments, 

others in real networks.  

The following is information about our dataset that 

consisted of network captured tcpdump *.pcap files from 

different sources: 

1) The Sandbox malicious captures included: 

a) 2,585 records obtained from the Verint [28] sandbox. 

b) 7,991 records obtained from an academic sandbox. 

c) 4,167 records obtained from the Virus Total [30]. 

d) 23,600 records obtained from the Emerging Threats [29]. 

e) 12,377 malicious records collected from the web and 

open source community1. 

2) Benign corporate traffic was captured for 10 days in a 

students' lab at Ben-Gurion University. 

3) Corporate traffic gathered by Verint [28] from a real 

network including malicious and benign traffic. 

B. Labeling methods 

The labeling of the data was carried out using two labeling 

methods (for the many experiments that we conducted): the 

first utilized well known NIDSs in order to enable comparison 

of our solution to open source systems that are available to 

everyone. The second was Verint’s blacklist labeling. 

All network traffic that was not marked as malicious was 

considered benign. All data except the proprietary real network 

traffic was labeled using both labeling methods due to the fact 

that data provided from the real network was sanitized and 

could not be labeled by commercial NDISs. 

Following are details about each of the labeling methods: 

1) For the labeling of the NIDSs we used Snort and Suricata 

SIDs, which uniquely identify the rules based on deep-packet 

inspection rules. We used only SIDs related to the "A Network 

Trojan was Detected" category: 

a) Snort uses the VRT [9] rules set 

                                                           
1 www.contagiodump.blogspot.com   www.mlwr.com  

www.malware-traffic-analysis.net   www.virusshare.com  
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b) Suricata uses the ETPro [10] rules set 

2) The proprietary labels provided by Verint unite all 

malicious activities to 52 unique families. Those labels were 

based on the domains, URLs and destination IP blacklist. 

Table II presents a brief comparison between the two types 

of labeling we used. While the corporate traffic gathered by 

Verint was labeled only with their labels, all other datasets 

were labeled with both types of labels. 

We undersampled the majority class in the training data. 

This is known as a simple yet efficient method for mitigating 

the imbalance challenge [31]. Specifically, we randomly chose 

150k unlabeled instances from over 50M instances and used 

them as benign. 

TABLE II.  COMPARISON OF THE TWO LABELING METHODS 

 Verint labels Snort and Suricata labels 

 
Created by cyber 

security experts 
VRT & ETPro SIDs 

Based on 
Domain names and 

IP addresses 
Deep packet inspection static rules 

Existing 

labels 
52 ≈ 6500 + 9500 

Seen labels 19 325 + 1180 

Multi-

labeling 

Non generic family 

selected 
The oldest rule selected 

Example 
Name: Virut 

Value: *.2traff.cn 

SID: 2803111 
Severity: ETPRO TROJAN 

Descr: Win32.KSpyPro.A.Checkin 

C. Dataset analysis 

The 18,000 malicious instances labeled with Verint labels 

that relate to 19 malware families are summarized in Table III. 

TABLE III.  MALWARE FAMILIES INSTANCES DISTRIBUTION 

Name Count of instances Percentage 

General Malware 5287 29.42% 

Virut 39 0.22% 

Sality 1005 5.60% 

Zeroaccess 47 0.26% 

Nuqel 25 0.14% 

Conficker 486 2.71% 

Backdoor.Paproxy 2 0.01% 

APT1 337 1.88% 

Shiz 377 2.10% 

Mebroot 23 0.13% 

Xpaj 223 1.24% 

Weelsof 1145 6.38% 

PowerLoader 6 0.03% 

Pony Loader 5 0.03% 

Pincav 125 0.70% 

Oficla 165 0.92% 

Matsnu 96 0.54% 

Krbanker 18 0.10% 

Gypthoy 2 0.01% 

Darkcomet 3 0.02% 

CryptoLocker 14 0.08% 

Carberp 1729 9.64% 

Expiro 5 0.03% 

Gamarue 1 0.01% 

Scar 14 0.08% 

Emerging threats 6772 37.74% 

For VRT [9] and ETPro [10], labeling only SIDs related to 

the "A Network Trojan was detected" category was used. All 

SIDs were associated with their creation date using the public 

changelog.2 This date is a de-facto day of malware discovery. 

If some session contains packets marked with two or more 

SIDs, the oldest one is selected as the representative SID. In 

this way, all malicious sessions were marked not only with 

their rule, but also with their discovery date. To reduce 

resolution granularity from the day of the rule creation, we 

aggregated it into weeks. 

To reduce the data volume to a tractable size, the number 

of samples was reduced using stratified sampling by malware 

family. Thus, the proportion between SIDs was preserved and 

the total number of malicious sessions was reduced from 328k 

to 50k. Table IV provides information about the labeled data 

while Figure 3 presents the count of new SIDs introduced each 

week and its aggregation. As can be observed, the volume and 

variety of new SIDs is intensified more than linear over time. 

 

Fig. 3.  VRT and ETPro sum of SIDs related to weeks during the period of 

15.12.2006 – 10.12.2014. 

TABLE IV.  VRT AND ETPRO LABELED INSTANCES INFORMATION 

 
VRT 

(Snort) 

ETPro 

(Suricata) 

Combined 

VRT & ETPro 

Unique rules 325 1180 1300 

Existing Malicious 

instances 
95274 281578 328749 

Used Malicious 
Instances 

12524 46046 50000 

Period 15.12.2006 – 10.12.2014 

Number of weeks 110 256 260 

V. EVALUATION 

To evaluate our system and the effectiveness of the 

extracted features, we conducted experiments to test several 

aspects. Specifically, we first evaluated the system's abilities 

related to the malware families: we attributed malicious traffic 

to known families and detected new families. Then, we 

evaluated the effect of the environment on the performance; 

specifically, we tested several sandbox environments as well as 

real traffic data. In addition, we also conducted chronological 

experiments in which we demonstrated our system’s ability to 

detect new malware. Specifically, in many cases our system 

was able to identify novel threats approximately a month prior 

to the appearance of the corresponding detection rules in state 

                                                           
2 https://rules.emergingthreats.net/changelogs 

https://support.sourcefire.com/notices/seus 
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of the art NIDSs. Finally, we evaluated the robustness of 

features across environments. 

A. Malware families 

1) Family classification 

The goal of this experiment was twofold. Our primary goal 

was to evaluate the capabilities of our method by 

differentiating benign traffic from malicious traffic. Secondly, 

we wanted to evaluate the method’s ability to further classify 

the malicious traffic to known labeled families.  

Although this task has already been addressed by previous 

studies [12], our experiments demonstrate that our approach 

can achieve comparable results. We used Verint labeling 

families as our training data and added benign network traffic 

to be classified as an additional family class. We evaluated our 

solution only for families that had at least 10 instances to 

enable training.  We applied the CFS algorithm for feature 

selection that identified the 12 network features (out of 927) 

presented in Table V as most effective for this task. It is 

apparent that even this small set of features spans across layers, 

protocols and observation resolution. 

TABLE V.  12 NETWORK FEATURES USED FOR FAMILY CLASSIFICATION 

Level Protocol Feature 

Session TCP Number of packets with RST flag 

Flow 

TCP 
Number of packets sent by client with ACK flag 
Number of destination ports and sessions ratio 

HTTP Median of inter-arrival time  

DNS 

Query name Alexa 1M Rank 

Count of DNS response addresses records 
Count of DNS response answer records 

Count of DNS response authoritative records 

Conv. 

Win. 

TCP 
Number of duplicate ACKs 

Number of Keep-alive packets 

DNS 
Number of sessions and good DNS responses 

ratio 

 Number of flows 

We used 10-fold cross validation to split the data for train 

and test sets and applied the Random Forest, Naïve Bayes and 

J48 learning algorithms. As seen in Figure 4 we were able to 

distinguish between benign and malicious traffic with near-

perfect accuracy, as well as to classify malware to their 

families with very high accuracy. 

 

Fig. 4.  Cross family classification accuracy. 

2) Detection of unknown malicious families 

The goal of this experiment was to show that our method 

can identify previously unknown malware families. We trained 

our model on certain families and tested the accuracy of 

classification between benign and malicious traffic on other 

families. For this task, the general malware families, General 

Malware and Emerging Threats are excluded from the dataset, 

as they do not represent any specific behavior. Rather, as 

observed from the family classification experiment, their 

behavior distributes among all families. We trained the model 

in a leave-one out manner, each time leaving one malicious 

family out, and tested on the one left out family. The suggested 

method was able to detect all new malware families with high 

accuracy. As observed in Figure 5, the Random Forest 

algorithm (which boosts the J48 algorithm) is able to detect all 

new families with very high accuracy (most of the families 

detected with an AUC of 0.98 except Conficker that detected 

with an AUC of 0.77), while the Naïve Bayes—a very simple 

algorithm—fails for some complex cases (e.g., APT1, Xpaj), 

but is effective enough in most cases. 

 

Fig. 5.  Detecting unknown malicious family accuracy. 

B. Effect of environments 

1) Network environment robustness 

The goal of this experiment was to show that our method is 

robust to the differences in the network environments. All 

together we obtained data from five very different 

environments (i.e., network traffic obtained from a variety of 

sources). It is important to notice that learning from one 

environment and classifying another environment was not 

addressed in any previous studies related to malware detection, 

although it is a real and practical challenge. Again, we 

implemented the leave one out splitting method. We trained 

the model on all but one environment and tested it on the one 

left-out environment.  As seen in Figure 6, the results are very 

accurate in classifying sandbox environments trained on other 

sandbox environments. Results are lower (AUC of 0.7) for the 

real network environment that was trained on sandbox 

environments. Thus, we can conclude that the method is more 

robust between similar environments. 

 

Fig. 6.  Network classification from unknown environment. 
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We believe that in order to improve the robustness between 

non-similar environments, it is possible to apply transfer 

learning methods [32] that can also measure the similarity 

between domains. It is also possible to train the system for 

separately only for non-similar environments. 

2) Real network traffic experiment 

All previous experiments were applied to a dataset that 

included both sandbox and real network data. However, the 

results of the network environment robustness experiment 

show that the real network environment behaves differently 

(results were much lower); this phenomenon might stem from 

the fact that the real environment may include more noise than 

a synthetic sandbox environment. Therefore, the goal of this 

experiment is to test the effectiveness of the method in 

classifying benign and malicious network traffic in a real 

environment. Since the real network traffic was recorded 

continuously for several days, the system can use earlier data 

to train for later in time events. Thus, in this experiment we 

applied a time-split. The train and test sets were split by their 

recording time as a percentage of all data records.  

In the real network dataset, 2,693 malicious instances were 

observed to be related to four different families as can be seen 

in Table VI. To produce the classification model, and preserve 

balance, only 10k benign instances were randomly chosen for 

this experiment from the same real network. 

TABLE VI.  REAL NETWORK MALICIOUS FAMILY DISTRIBUTION 

Name Count of instances Percentage 

General Malware 1987 73.78% 

Sality 234 8.69% 

Conficker 421 15.63% 

Emerging threats 51 1.89% 

The results of this experiment are presented in Figure 7. 

The results reveal that from the split point 60/40 (60% of data 

in the train test and the remaining 40% in test set), the AUC 

remains consistently above the level of 0.8.  From the split 

point 80/20, the stable level is raised to 0.9. This result 

confirms that a moderate amount of data in the train set is 

enough for high accuracy detection of malicious network flows 

in a real network. 

 

Fig. 7.  Real network recording time split results. 

C. Chronological experiments 

Since our labeling includes, for each malicious network 

instance, the relevant SID that relates to the Snort and Suricata 

rules, as well as the rules' deployment date in these systems, 

we were able to evaluate the extent to which our method can 

handle malicious activities before they had been discovered. 

This implies that this solution might handle future threats.  

Here, we used the time split method, and split the data into 

train and test sets based on the deployment dates of SIDs.  

Thus, we train the system on traffic that includes malicious 

activities that were handled before the split date, and test 

detection accuracy on traffic from the "future" (i.e., traffic 

instances for which SIDs are from later weeks). At each split 

point, the CFS algorithm was used to select the best features 

that divide benign and malicious traffic for the specific training 

set. This simulates a regular scenario where the detection 

model was developed and trained on the split date. 

1) Four weeks foresight 

In this section we would like to evaluate the ability of our 

method to detect malware that has recently been introduced. 

Specifically, in this section the test sets consist of sliding 

windows of 4 weeks ahead of the latest training set point. For 

example, for week 100, the training set consists of the data 

labeled with SIDs deployed between weeks 1-100 and the test 

set consists of data between the weeks 101-104.  

The results of this experiment, presented in Figure 8, show 

that the Random Forest classifier succeeds in detecting most of 

the malware (except in 2 cases) 4 weeks before a relevant rule 

was deployed. Naïve Bayes and the J48 fail (AUC<0.5) in 

some cases, which can be explained by their overfitting 

property.   

The 2 cases with the sharp drop in the AUC between weeks 

211 to 214 and between weeks 240 to 243 are the result of 

malware that behaves very differently from previously trained 

malware. When the malware's behavior is finally included in 

the train set, the model stabilizes. 

 The Random Forest was stable at all periods of time and 

produced good AUC results. We received an average AUC 

over all periods of 0.966. Such models can produce a high true 

positive with a reasonable false positive and can be used in 

production for different tasks. 

 

Fig. 8.  Chronological experiment by looking four weeks ahead, results.  

2) Global foresight 

Given the encouraging results for the 4 weeks foresight, we 

wanted to evaluate how early in time our methods could detect 

undiscovered malware activities. Similarly to the 4 weeks 

foresight experiment, our train set included all data before the 

weekly split points, but the train set in this experiment included 

all future data (not only 4 weeks ahead).  
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The results presented in Figure 9 show, for each week, the 

detection performance of all malware that was discovered 

afterward. We can see that the detection rate deteriorates as we 

look further in time, because malware gradually evolves over 

time. 

 

Fig. 9.  Chronological experiment by looking at all future datasets, results. 

The interesting point is week 159, which is 3.5 years before 

the newest malware in the dataset. The AUC at this point, and 

in all the subsequent ones, is at least 0.9, which indicates 

satisfactory model quality. This implies that our model is able 

to handle future threats even 3.5 years before they occur. For 

the week 309—which was 1 year before—and from then on, 

the results are better, in that the AUC is higher than 0.95. 

D. Robustness of features 

Analysis of the previous experiments described in this 

section has shown that only 204 features of the available 927 

were ever selected by the CFS algorithm. On average, only 27 

features were selected during each week for the respected 

model as is presented in Figure 10. Furthermore, some of the 

features were constantly selected for most of the models during 

all periods (weeks). From Figure 11, it is clearly shown that the 

significant part of these features were included in models for 

more than a period of 100 weeks (2 years). This means that a 

very small set of features can serve the model for a long period 

of time. 

  

Fig. 10.  Number of features used in each week. 

 

Fig. 11.  Atrtributes usage histogram. 

As an extension to this phenomena, in this experiment  we 

also examined whether there was a constant set of features that 

were effective cross environments, and not only over time. 

Thus, we extracted for each environment (Verint, Academic, 

Virus Total and Emerging Threats sandboxes), a specific set of 

features. In addition, as an alternative, for each environment 

we prepared a model that was based on features selected from 

all other environments. We refer to this set as the global set.  

For each environment, the chronological experiment was 

conducted twice; once with the specific features and once with 

the global selected features. We compared the results of the 

AUC measure between the two experiments. 

Comparison results are presented in Figure 12. We measure 

the robustness of our selected features as the difference 

between the AUC of a model created with global selected 

features and the AUC of models created with private selected 

features.  In most cases, as seen from Figure 12, (except for the 

Naïve Bayes) the difference is equal or higher than 0, thus 

global selected features are better than those obtained using the 

specific ones, or the difference is not significant. The only 

anomaly in these results is with the Naive Bayes model which 

in general produced less accurate results compared to the 

decision tree models, and thus is more resilient to the features' 

changes. It therefore can be concluded that it is possible to 

extract features globally and obtain comparable results. 

 
Fig. 12.  Difference in average AUC. 

VI. CONCLUSIONS AND FUTURE WORK 

In this study, we presented a network classification method 

that was used to classify malicious and benign traffic and 

attribute malicious activity to a malware family both for known 

and new malware. We show that different observation 

resolution, cross layers and protocols features improve 

classification performance. The accuracy of the proposed was 

not affected by network environments, neither sandbox nor real 

networks. The predictive performance results showed 

significant improvement over modern rule based network 

intrusion detection systems (e.g., Snort and Suricata); unknown 

malware was detected at least a month before their static rule 

was deployed. All this was possible with a small amount of 

network behavior features, which are suitable over time and for 

different network environments. 

The practical significance of this research is the opportunity 

to develop highly accurate and good performing NIDS which 

apply machine learning algorithms, and can detect most 

modern malicious software as well as new and unknown 

malware. Since the proposed method analyzes only traffic 

behavior and not its content, it is effective even for encrypted 

traffic and for malware that uses legitimate network resources, 

such as C&C or proxy toward C&C. Since no payload analysis 
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is used for this approach, users' privacy is preserved, thus such 

NIDS can be integrated in enterprise network systems. 

For future work, we intend to extend the research toward 

transfer learning techniques to improve detection from 

untrained network environments, evaluate the proposed 

methods and models on mobile network traffic, test the 

proposed methods for malware family clustering, and finally 

adjust the method for online detection for high bandwidth 

networks. 
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